Phospho-site mutants of the RNA Polymerase II C-terminal domain alter subtelomeric gene expression and chromatin modification state in fission yeast

نویسندگان

  • Maki Inada
  • Robert J. Nichols
  • Jahan-Yar Parsa
  • Christina M. Homer
  • Ruby A. Benn
  • Reyal S. Hoxie
  • Hiten D. Madhani
  • Stewart Shuman
  • Beate Schwer
  • Jeffrey A. Pleiss
چکیده

Eukaryotic gene expression requires that RNA Polymerase II (RNAP II) gain access to DNA in the context of chromatin. The C-terminal domain (CTD) of RNAP II recruits chromatin modifying enzymes to promoters, allowing for transcription initiation or repression. Specific CTD phosphorylation marks facilitate recruitment of chromatin modifiers, transcriptional regulators, and RNA processing factors during the transcription cycle. However, the readable code for recruiting such factors is still not fully defined and how CTD modifications affect related families of genes or regional gene expression is not well understood. Here, we examine the effects of manipulating the Y1S2P3T4S5P6S7 heptapeptide repeat of the CTD of RNAP II in Schizosaccharomyces pombe by substituting non-phosphorylatable alanines for Ser2 and/or Ser7 and the phosphomimetic glutamic acid for Ser7. Global gene expression analyses were conducted using splicing-sensitive microarrays and validated via RT-qPCR. The CTD mutations did not affect pre-mRNA splicing or snRNA levels. Rather, the data revealed upregulation of subtelomeric genes and alteration of the repressive histone H3 lysine 9 methylation (H3K9me) landscape. The data further indicate that H3K9me and expression status are not fully correlated, suggestive of CTD-dependent subtelomeric repression mechansims that act independently of H3K9me levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histone H3K36 trimethylation is essential for multiple silencing mechanisms in fission yeast

In budding yeast, Set2 catalyzes di- and trimethylation of H3K36 (H3K36me2 and H3K36me3) via an interaction between its Set2-Rpb1 interaction (SRI) domain and C-terminal repeats of RNA polymerase II (Pol2) phosphorylated at Ser2 and Ser5 (CTD-S2,5-P). H3K36me2 is sufficient for recruitment of the Rpd3S histone deacetylase complex to repress cryptic transcription from transcribed regions. In fis...

متن کامل

Nucleosome structure of the yeast CHA1 promoter: analysis of activation-dependent chromatin remodeling of an RNA-polymerase-II-transcribed gene in TBP and RNA pol II mutants defective in vivo in response to acidic activators.

The Saccharomyces cerevisiae CHA1 gene encodes the catabolic L-serine (L-threonine) dehydratase. We have previously shown that the transcriptional activator protein Cha4p mediates serine/threonine induction of CHA1 expression. We used accessibility to micrococcal nuclease and DNase I to determine the in vivo chromatin structure of the CHA1 chromosomal locus, both in the non-induced state and up...

متن کامل

Global Gene Expression Analysis of Fission Yeast Mutants Impaired in Ser-2 Phosphorylation of the RNA Pol II Carboxy Terminal Domain

In Schizosaccharomyces pombe the nuclear-localized Lsk1p-Lsc1p cyclin dependent kinase complex promotes Ser-2 phosphorylation of the heptad repeats found within the RNA pol II carboxy terminal domain (CTD). Here, we first provide evidence supporting the existence of a third previously uncharacterized Ser-2 CTD kinase subunit, Lsg1p. As expected for a component of the complex, Lsg1p localizes to...

متن کامل

Recruitment of P-TEFb (Cdk9-Pch1) to chromatin by the cap-methyl transferase Pcm1 in fission yeast.

Capping of nascent pre-mRNAs is thought to be a prerequisite for productive elongation and associated serine 2 phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (PolII). The mechanism mediating this link is unknown, but is likely to include the capping machinery and P-TEPb. We report that the fission yeast P-TEFb (Cdk9-Pch1) forms a complex with the cap-methyltransferase Pcm1 ...

متن کامل

Functional interaction of Rpb1 and Spt5 C-terminal domains in co-transcriptional histone modification.

Transcription by RNA polymerase II (RNAPII) is accompanied by a conserved pattern of histone modifications that plays important roles in regulating gene expression. The establishment of this pattern requires phosphorylation of both Rpb1 (the largest RNAPII subunit) and the elongation factor Spt5 on their respective C-terminal domains (CTDs). Here we interrogated the roles of individual Rpb1 and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2016